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Abstract
This work is a Python implementation of spectral learning of latent-variable PCFGs
(Cohen et al., 2014, 2013). With code vectorization and a two-stage state split-
ting procedure, we demonstrate that this implementation is 64 times faster to train
and uses 46 times less space (than the previous implementation) while reaching a
similar F1 score of 87.80. The testing code is parallelized and JIT-compiled, which
makes testing highly efficient. We also stated a way to cache computed data which
makes automated hyperparameter tuning possible. The codebase, implemented in 1
language (instead of 4 previously) is much more user-friendly, compact, and main-
tainable. Finally, this work introduces spectral learning of latent-variable PCFGs
from an engineering perspective, which helps inexperienced readers understand this
subject quickly.
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Chapter 1

Introduction

Probabilistic context-free grammars (PCFGs) has been one of the most important
probabilistic models in natural language processing. In the parsing problem, given
a sentence, we attempt to group elements in the sentence into syntactic categories
and form a parse tree. For example, in Figure 1.1(a), given the sentence submit my
project in April : the whole sentence is labelled verb phrase (VP), the constituent
my project is labelled noun phrase (NP), and the constituent in April is labelled
prepositional phrase (PP), etc.

VP

VBP

submit

NP

PRP$

my

NN

project

PP

IN

in

NP

NNP

April

(a)

VP

VBP

submit

NP

PRP$

my

NN

project

PP

IN

in

NP

NNP

April

(b)

Figure 1.1: Two example parse trees of the sentence submit my project in April.
The left one is the intuitively correct parse, while the right one exhibits
PP-attachment error.

A PCFG in its most basic form (Chapter 2.1), trained on the Penn Treebank Wall
Street Journal Dataset (Marcus et al., 1993) (PTB WSJ), can only achieve around
65-75 F1 score on the test set. Its poor accuracy is largely due to its strong inde-
pendence assumptions:

• Structural Independence: the production probability at each node in the
tree does not depend on its surrounding context. For example, the probability
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Chapter 1. Introduction 2

of PP producing IN NP is dependent only on PP itself and not on its context
such as its parent VP. But it is known that in natural languages, production
probabilities do depend on its context. For example, NP in a subject position
is much more likely to produce a pronoun than NP in an object position.

• Lexical Independence: the production probabilities do not depend on the
words seen.1 For example, in the sentence submit my project in April, in April
refers to submit, instead of project. But this dependency is not captured in a
PCFG and thus it can make mistakes such as the one shown in Figure 1.1(b)
- the tree has very similar productions compared to the correct tree but with
PP attached to the incorrect position.

To combat the independence assumptions, researchers have tried to augment PCFGs
by splitting each label into different states, with each state corresponding to some
context. This way, contextual information can be incorporated into the grammar
without sacrificing its context-freeness.

Charniak (1997) and Collins (2003) annotated each node with lexical information,
illustrated in Figure 1.2(a). Lexicalized grammars achieved significantly improved
F1 scores (87.5-88.5), but an disadvantage was that the resulting grammars were
very sparse and required sophisticated smoothing.

VP-submit

VBP-submit

submit

NP-project

PRP$-my

my

NN-project

project

PP-in

IN-in

in

NP-April

NNP-April

April

(a)

VP

VBPˆVP

submit

NPˆVP

PRP$ˆNP

my

NNˆNP

project

PPˆNP

INˆPP

in

NPˆPP

NNPˆNP

April

(b)

Figure 1.2: (a) Each node is annotated with its head word (b) Each node is anno-
tated with its parent’s label

Johnson (1998) showed that the accuracy can be much improved from the baseline
if we simply annotate each node with its parent’s/siblings’ label(s), illustrated in
Figure 1.2(b). Klein and Manning (2003) further annotated the nodes with linguis-
tically motivated features and achieved an F1 score of 86.3.

Both lexicalized and unlexicalized grammars required manual annotations. Mat-
suzaki et al. (2005) proposed a latent-variable grammar where states are split au-

1Except for the productions right above the words.



Chapter 1. Introduction 3

tomatically, illustrated in Figure 1.3. Petrov et al. (2006); Petrov and Klein (2007)
improved the F1 score to 90.1 using a hierarchical split-merge procedure.

VP-3

VBP-1

submit

NP-6

PRP$-8

my

NN-2

project

PP-1

IN-1

in

NP-4

NNP-2

April

Figure 1.3: Parse tree with latent annotation.

Previous latent-variable grammars were learnt using expectation-maximization which
required long training time and did not provide any consistency guarantee. Cohen
et al. (2014) showed that a latent-variable grammar can be learnt using spectral
learning which is highly efficient and has a PAC-style guarantee. Cohen et al. (2013)
achieved an F1 score of 88.05 using spectral learning.

This work is largely based on (Cohen et al., 2014, 2013). The main contributions
are as follows:

• A re-implementation of Cohen et al. (2013) in 1 programming language (Python)
instead of 4 languages (Python, Matlab, Java, C++). Readers can find MIT
licensed source code at https://github.com/GavinPHR/Spectral-Parser.

• Chapter 3 and Chapter 6: A step-by-step introduction to spectral learning and
parser evaluation, from an engineering perspective. The resources currently
available on these topics are quite mathematical and often pose a challenge
to newcomers interested in the subject. These chapters should help readers
understand how each component of the implementation fits together.

• Chapter 4: The procedure to vectorize the training algorithm which results in
a significant reduction in training time.

• Chapter 5: A two-stage state-splitting method that is more efficient in regards
to time and space complexity.

• Chapter 8: Code acceleration with Numba (Lam et al., 2015) which JIT-
compiles Python code.

• Chapter 9: Caching for efficient automated hyperparameter tuning methods
such as Bayesian optimization.

https://github.com/GavinPHR/Spectral-Parser


Chapter 2

Background

There are three basic components to spectral learning of latent-variable probabilist
context-free grammars, i.e.

1. Probabilistic context-free grammars (PCFGs)

2. Latent-variable

3. Spectral learning

We will briefly summarise each of them in the following three sections.

2.1 Probabilistic Context-Free Grammars
A probabilistic context-free grammar (PCFG) is a 7-tuple (N , I,P , n, t, q, π) where:

• N is the set of nonterminals in the grammar. I ⊂ N is the set of interminals
and P ⊂ N is the set of preterminals. Note that I ∪ P = N and I ∩ P = ∅.

• n is the set of terminals.

• For all a ∈ I, b ∈ N , c ∈ N , we have a context-free rule a → b c and its
associated probability t(a→ b c | a).

• For all a ∈ P , x ∈ n, we have a context-free rule a → x its associated
probability q(a→ x | a).

• For all a ∈ I, we have a probability that a appears at the root of a tree π(a).

This definition of a PCFG differs slightly (but is equivalent to) from the standard
definition in many literature, but this definition serves as a stepping stone towards
the definition of a latent-variable PCFG in Chapter 3.

A PCFG is trained by aggregating statistics in a given corpus of parse trees. N , I,P , n
are found by simple inspection; t, q, π are calculated by maximum likelihood esti-
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Chapter 2. Background 5

mation (MLE), for example:

t(a→ b c | a) =
|a→ b c|
|a|

(2.1)

where | · | denotes of the number of occurrence of · (i.e. a → b c and a). q, π are
calculated in similar ways.

Now given a parse tree, its probability can be calculated as the product of probabil-
ities of its rules. For a tree with n nodes, if we label each node in (any) order from
1 to n and each node’s associated rule from r1 to rn, then its probability is:

p(tree) = π(aroot)
∏
i:i∈I

t(ri | ai)
∏
i:i∈P

q(ri | ai) (2.2)

S

NP

D

the

N

dog

VP

V

saw

P

him

Figure 2.1: An example tree where r1 = S → NP V P , r2 = NP → D N , etc.

Take the tree in Figure 2.1 for a concrete example, its probability is:

p(tree) =π(S)×
q(S → NP V P | S)× q(NP → D N | NP )× q(V P → V P | V P )×
t(D → the | D)× t(N → dog | N)× t(V → saw | V )× t(P → him | P )

(2.3)

At test time, where we are only given a sentence and want to build a parse tree, we
can enumerate all possible trees and return the best tree1.

2.2 Latent-Variable Models
A latent variable is a variable that is unobserved but can be inferred from the vari-
ables that are observed. It might sound counter-intuitive to be able infer something
that is unobserved, but let us illustrate it with an example.

In Figure 2.2, Bob is saying “How are you?" to Alice. Bob knows exactly the words
he is trying to convey, but all Alice receives are some sound waves, where she needs
to infer what words generated them. For Alice, the sound waves are observed, but
the concrete words are latent. It should be clear that it indeed is possible for Alice

1The best tree can be the most likely tree, but we will use a different metric as discussed in
Chapter 7.
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Figure 2.2: Bob asks Alice "How are you?"; Alice receives the sound waves and
infers the words spoken.

to infer the words spoken. Thus this scenario can be modelled as a latent-variable
model to enable machines to recognize speech.

Often, latent-variable models are trained using the expectation-maximization (EM)
algorithm. Previously work by Matsuzaki et al. (2005) and Petrov et al. (2006) are
both trained using the EM algorithm. The EM algorithm, though, has problems
with local-optima and long training time. Spectral learning is another method to
train latent-variable models with strong guarantees and is highly efficient.

2.3 Spectral Learning
The word spectral in spectral learning refers to the singular value decomposition
(SVD). SVD can factor any matrix Ω ∈ Rm×n into 3 matrices U,Σ, V :

Ω
SVD
= UΣV T (2.4)

where U ∈ Rm×m (left singular vectors) and V ∈ Rn×n (right singular vectors)
are orthogonal matrices, and Σ ∈ Rm×n (singular values2) is a rectangular-diagonal
matrix.

For various reasons, a full SVDmight not be desirable and a truncated SVD is applied
where only the top-k largest singular values and their corresponding singular vectors
are calculated:

Ω
Truncated SVD

≈ UkΣkV
T
k (2.5)

where U ∈ Rm×k,Σ ∈ Rk×k, V ∈ Rn×k. Usually k is chosen to be much smaller
than Ω’s rank, thus UkΣkV

T
k = Ωk is also called a low-rank approximation to Ω. See

Figure 2.3 for an illustration.

A fact worth noting is that, Ωk is the optimal rank-k approximation of Ω and there
is no other rank-k matrix that is ‘closer’ to Ω in terms of Frobenius norm (Eckart
and Young, 1936).

How does a truncated SVD help us learn the parameters of a latent-variable model?
An intuition would be that: if our observables are of very high-dimension, the
low-dimensional approximations of them can be seen as the latent representations
that generated them. If we can put the observations into matrices, we can use

2More specifically, the values on the diagonal of Σ are called the singular values.
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Figure 2.3: Rank-k approximation of matrix Ω using SVD.

the truncated SVD to get such low-dimensional representations. The mathematical
proofs to exactly why this works are beyond the scope of this work, but readers
are welcomed to consult Hsu et al. (2012) and Cohen et al. (2014) for proofs and
statistical guarantees.



Chapter 3

Spectral Learning of Latent-Variable
PCFGs

In this chapter, we first state the definition of a latent-variable PCFG from Cohen
et al. (2014), then state the training algorithm in an engineering perspective.

3.1 Latent-Variable PCFGs
A latent-variable PCFG (L-PCFG) is a 8-tuple (N , I,P ,m, n, t, q, π) where:

• N is the set of non-terminals in the grammar. I ⊂ N is the set of in-terminals
and P ⊂ N is the set of pre-terminals. Note that I ∪ P = N and I ∩ P = ∅.

• m is the set of latent states.

• n is the set of terminals.

• For all a ∈ I, b ∈ N , c ∈ N , ha, hb, hc ∈ m, we have a context-free rule
a(ha)→ b(hb) c(hc) and its associated likelihood t(a→ b c, hb, hc | a, ha).

• For all a ∈ P , x ∈ n, h ∈ m, we have a context-free rule a(h) → x its
associated likelihood q(a→ x | a, h).

• For all a ∈ I, h ∈ m, we have a probability that a(h) appears at the root of a
tree π(a, h).

Note the similarity between this definition and that of a PCFG in section 2.1. The
only difference is that every non-terminal is split into m (latent) states.

To calculate the probability of a given tree with n nodes, if we label each node
in (any) order from 1 to n and each node’s associated rule from r1 to rn, then its
probability is:

p(tree) =
n∑

i=1

π(a1, h1)
∏
i:i∈I

t(ri, hb(i), hc(i) | ai, hi)
∏
i:i∈P

q(ri | ai, hi) (3.1)

8



Chapter 3. Spectral Learning of Latent-Variable PCFGs 9

where b(i), c(i) return node-i’s left child’s index and right child’s index, respectively.
Again note the similarity between equation 3.1 and equation 2.2. The difference is
that with the addition of latent variables, we need to marginalize them out for the
probability of the tree.

At test time, we can still indeed enumerate all possible trees and return the best
tree.

3.2 Spectral Learning Algorithm
Before we discuss the training algorithm, let us first put the desired parameters into
matrix/vector forms as follows:

• For every binary context-free rule r = a → b c, let t ∈ Rm×m×m be a tensor
where [t]i,j,k = t(r, hj, hk | a, hi).

• For every unary context-free rule r = a → x, let q ∈ Rm be a vector where
[q]i = t(r | a, hi).

• For every a ∈ I, let π ∈ Rm be a vector where [π]i = t(a, hi).

Now we are ready to state the training algorithm, where each step is split into a
subsection below.

3.2.1 Preprocessing

Penn Treebank Wall Street Journal (PTB) LDC99T42 (Marcus et al., 1993) dataset
is the standard dataset used to train and evaluate syntactic parsers. PTB sections
02-21 is used for training, section 22 for developing, and section 23 for testing.

Is is also standard to clean up the data so that the trees:

• have no empty labels at the root.

• have no functional labels (e.g. -LOC, -CLR)

• have no -NONE-.

• have no X → X productions.

To fit our definition of L-PCFGs, we also need to binarize the parse trees.

Figure 3.1: Mappings from nonterminals/terminals to integers. Operating with in-
tegers greatly improves performance.
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For performance, it is also desirable to map all the non-terminals and terminals from
strings to integers. We make one-to-one mappings like the ones shown in Figure 3.1.

3.2.2 Rule representation and PCFG Training

N , I,P , n can easily be found by inspection. Since non-terminals and terminals are
represented using integers, we also create an one-to-one mapping from context-free
rules to integers as follows:

• For each binary rule a→ b c, let its integer representation be:

(a << 40) ^ (b << 20) ^ c

• For each unary rule a→ x, let its integer representation be:

(a << 40) ^ (x << 20)

where << is the bit shift left operator, and ^ is the XOR operator. To recover a→ b c
(or a→ x), one can simply reverse these operations.

To complete training of the PCFG, we calculate likelihoods t, q, π using Equation
2.1.

3.2.3 Feature Extraction

For each node in a parse tree, we call the tree fragment the node spans inside tree,
and the rest of the tree outside tree, see Figure 3.2.

Figure 3.2: The inside and outside trees for the VP node.

We have two functions φ and ψ. When given a node in a tree, φ return features
from the inside tree, and ψ returns features from the outside tree. For both φ and ψ,
Cohen et al. (2013) selected features that consist of tree fragments, part-of-speech
(POS) tags of head words, and span sizes. These features are all discrete and are
one-hot encoded, and the returns from φ and ψ are (sparse) vectors. We detail the
set of features used in this work in section 5.2.
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It is worth noting that the features can be anything that is relevant and should
be further explored as they affects the parsing accuracy significantly. We have
experimented with many features, including different ways to encode inside/outside
trees, word embeddings like GloVe (Pennington et al., 2014) and BERT (Devlin
et al., 2019), span shapes (Hall et al., 2014), etc. Some yielded parsing accuracy
worse than the PCFG baseline and we have yet to find a better set of features.
We are confident that any feature which can improve the parsing accuracy must
capture words’ semantic meanings, as most of the incorrect parses have no problem
with syntax.

3.2.4 Feature Scaling

The features are scaled after they are collected. Let inside feature-i of node-n be
[φ(n)]i, we scale it to:

[φ(n)]i ×

√
M

count(i) + κ
(3.2)

where count(i) is the number of appearance of feature-i,M is the number of examples
in the training set, and κ is a small integer (κ = 5).

The same scaling is applied to outside features [ψ(n)]i.

This simple scaling alone improves the F1 score by about 5. Cohen et al. (2013)
offered some explanation to why this helps: the scaling is similar to whitening
which standardize and decorrelate the data. Whitening is commonly used in data
preprocessing to increase performance. Actually, we found that the value ofM (100-
100000) is surprisingly unimportant – any value from 100 to 100000 yields roughly
the same results. A better understanding of the effect of scaling should contribute
to higher accuracy and we shall explore this further.

In the following sections, we shall assume scaling has been applied when referring
to the feature functions φ, ψ.

3.2.5 SVD and Projections

For each non-terminal a, calculate a (non-centered cross-covariance) matrix Ωa:

Ωa =
1

|a|
∑

n:label(n)=a

φ(n)ψ(n)T (3.3)

Note that φ, ψ can return high dimensional (10000+ dimensional) vectors with most
of the entries being 0. Computationally, it is vital that these vectors, and subse-
quently the Ω matrices, are represented using sparse data structures in memory. We
will discuss this in more details in section 4.2.

Perform a truncated SVD on each Ωa:

Ωa ≈ UaΣa(V a)T (3.4)
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Let the inside projection matrix for a be (Ua)T and the outside projection matrix
for a be (Σa)−1(V a)T .

Then again for each node-n (which label a), project its feature vectors φ(n), ψ(n)
to the latent representations using the projection matrices:

Y (n) = (Ua)Tφ(n) (3.5)
Z(n) = (Σa)−1(V a)Tψ(n) (3.6)

3.2.6 Constructing Parameters

Some technical details in this section are not entirely correct intentionally.
In particular, the constructed parameters are not t,q,π, but t,q,π up to a
linear transformation. This information only adds an additional barrier to
understanding this implementation, and everything will work as long as the
parsing algorithm outlined in Chapter 7 is followed. Interested readers should
consult Cohen et al. (2014) for more information.

For each rule a→ b c, construct a tensor E3,a→b c
i,j,k :

E3,a→b c
i,j,k =

1

|a→ b c|
∑

(na,nb,nc)

Z(na)⊗ Y (nb)⊗ Y (nc) (3.7)

where (na, nb, nc) are tuples of nodes in which nb, nc are na’s left and right child, ⊗
denotes the outer product. For readers who are familiar with einsum, X ⊗ Y ⊗ Z
corresponds to einsum('i,j,k->ijk', X, Y, Z).

Then the (unsmoothed) parameter t for a→ b c is:

t(a→ b c) =
|a→ b c|
|a|

× E3,a→b c
i,j,k (3.8)

Similarly, parameters q for rules of the form a→ x and the parameter π:

q(a→ x) =
|a→ x|
|a|

× 1

|a→ x|
∑
(na,x)

Z(na) (3.9)

π(a) =
|a|

|training set|
× 1

|a|
∑

root na

Y (na) (3.10)

Figure 3.3, shows visually the vectors used to construct the parameters t,q,π.

3.2.7 Smoothing

E3,a→b c
i,j,k are 3rd-order moments, and to get good estimates of them, we need a large

amount of data. In our training set, some rules do not appear very often at all
and their estimated parameters are unreliable. Cohen et al. (2013) proposed to
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(a) (b) (c)

Figure 3.3: Projected vectors used to construct (a) t (b) q (c) π

calculate lower-order estimates as well, and then interpolate estimates of different
orders together.

Let:

Ea→b c
i,j,· =

1

|a→ b c|
∑

(na,nb,nc)

Z(na)⊗ Y (nb) Ea→b c
·,·,k =

1

|a→ b c|
∑

(na,nb,nc)

Y (nc)

Ea→b c
i,·,k =

1

|a→ b c|
∑

(na,nb,nc)

Z(na)⊗ Y (nc) Ea→b c
·,j,· =

1

|a→ b c|
∑

(na,nb,nc)

Y (nb)

Ea→b c
·,j,k =

1

|a→ b c|
∑

(na,nb,nc)

Y (nb)⊗ Y (nc) Ea→b c
i,·,· =

1

|a→ b c|
∑

(na,nb,nc)

Z(na)

Then the 2nd-order moment would be:

E2,a→b c
i,j,k =

1

3

(
Ea→b c

i,j,· ⊗ Ea→b c
·,·,k + Ea→b c

i,·,k ⊗ Ea→b c
·,j,· + Ea→b c

·,j,k ⊗ Ea→b c
i,·,·

)
(3.11)

And the 1st-order moment would be:

E1,a→b c
i,j,k = Ea→b c

i,·,· ⊗ Ea→b c
·,j,· ⊗ Ea→b c

·,·,k (3.12)

Additionally we can calculate the 0th-order moment:

Ha
i =

1

|a|
∑
na

Z(na) F a
i =

1

|a|
∑
na

Y (na)

E0,a→b c
i,j,k = Ha

i ⊗ F b
j ⊗ F c

k (3.13)

Interpolate these estimates together and the smoothed parameters are:

Esmoothed,a→b c
i,j,k =λE3,a→b c

i,j,k + (3.14)

(1− λ)(λE2,a→b c
i,j,k + (3.15)

(1− λ)(λE1,a→b c
i,j,k + (1− λ)E0,a→b c

i,j,k )) (3.16)
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where λ =

√
|a→b c|

C+
√
|a→b c|

and C is chosen using the development set. This calculation

of λ makes sure that when a rule appears frequently, it keeps its 3rd-order estimate;
and conversely, when a rule appears infrequently, the lower-order estimates take on
more weight.

Cohen et al. (2013) also smoothed unary rules, but we found that to have no effect
on the parsing accuracy.

3.3 Training Pipeline
The whole spectral learning pipeline from section 3.2.1 to section 3.2.7 are visualized
below in Figure 3.4.

Figure 3.4: Every stage in the training pipeline for spectral learning of L-PCFG

The Python implementation also follows this pipeline rigorously, with some addi-
tional improvement made for performance.



Chapter 4

Vectorization

This chapter assumes the reader is familiar with Python, SciPy, and NumPy.

The training steps for L-PCFGs involve many matrix-vector operations. Chapter
3 states the steps in non-vectorized forms, vectorizing these steps can reduce the
training time by 4-5 folds. The previous implementation, Rainbow Parser (Cohen
and Narayan, 2017), was also vectorized, but ineffective because some care need to
be taken when dealing with sparse data structures.

4.1 Node Ordering
A total ordering of tree nodes in our training set is the foundation behind vector-
ization.

Figure 4.1: Ordering of nodes in a set of 3 example trees. Trees are ordered from
left to right and nodes are ordered using post-order traversal.

Let the training set be T and let there be a total ordering on T . In Python, this is
the same as putting all the parse trees in a ordered data structure such as a list.

Then for each tree t ∈ T , let the set of nodes in t be Nt and let there be a total
ordering on Nt. In code, the ordering can be imposed using some ordered tree
traversals (e.g. in/pre/post-order traversals).

15
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Finally, for the set of all nodes N , where each node n ∈ N is the j-th node of the
i-th tree, total ordering is imposed by ordering the tuples (i, j). This is equivalent
to how tuples are compared in most programming languages.

Figure 4.1 shows a possible ordering of nodes.

4.2 Augmented Feature Function
Remember that φ, ψ were feature functions that take in a node and return a vector.
In this section, we propose augmented versions of them that return matrices.

Define the augmented feature functions as follows:

Φ(a) = [φ(na1), φ(na2), . . . , φ(nak)] (4.1)
Ψ(a) = [ψ(na1), ψ(na2), . . . , ψ(nak)] (4.2)

where na1, na2, . . . , nak are the nodes that have label a and that na1 ≺ na2 ≺ · · · ≺
nak.

Conceptually, it is very simple to construct these matrices; while practically, the
approach can vary in speed considerably. Recall that the returned vectors from φ, ψ
are sparse, and as the result, the returned matrices from Φ,Ψ are sparse as well.
The previous implementation did the following (for Φ, similarly for Ψ):

1. Prepare an empty sparse matrix for Φ(a).

2. Retrieve each φ in dense representation.

3. Convert the dense vectors into sparse vectors.

4. Insert the sparse vectors one-by-one into the sparse matrix.

It is wasteful to convert dense vectors to sparse ones because one would have to
‘look through’ all those 0 entries (i.e. most of the entries). It is also wasteful to
modify sparse matrices because they are often stored in a way that optimizes for
future computation, and modification to them is (often) inefficient.

To fix these issues, we do the following in this work:

1. First retrieve each φ and store their indices and corresponding values only.

2. Make a dok (dictionary of keys) matrix (scipy.sparse.dok_matrix) - a sparse
structure that allows fast modification.

3. Insert the indices and values into the dok matrix.

4. Convert the dok matrix into a csr (compressed sparse row) matrix
(scipy.sparse.csr_matrix) - a sparse structure that allows fast computa-
tion.

We do not convert between dense and sparse data structures, and we only do modi-
fications to a sparse matrix that is designed to be modified. It should be intuitively
clear that this is a much faster way to construct these matrices than the previous
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implementation. We have also experimented with other less effective (but still much
faster than before) ways to construct these matrices, but the details are omitted
here.

4.3 Revised SVD and Projections
With Φ,Ψ, let us update our SVD and projections step outlined in section 3.2.5.

For each non-terminal a ∈ N , calculate matrix Ωa:

Ωa =
1

|a|
Φ(a)Ψ(a)T (4.3)

Perform SVD as before Ωa = UaΣa(V a)T , then the inside projection matrix is (Ua)T

and the outside projection matrix is (Σa)−1(V a)T .

Finally do projections:

Y(a) = (Ua)TΦ(a) (4.4)
Z(a) = (Σa)−1(V a)TΨ(a) (4.5)

Y(a) and Z(a) are the matrices that contain the original Y (n)s and Z(n)s. We can
then proceed to construct the smoothed parameters as before, outlined in sections
3.2.6 and 3.2.7.
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Two-Stage Splitting

Before we discuss what two-stage splitting is and why it can be helpful, it is impor-
tant we establish the time and space complexity lower bound of the spectral learning
algorithm.

Remember that in a L-PCFG grammar, N is the set of nonterminals and m is the
set of latent states, let their sizes be |N | and |m| respectively. We state that the
time and space lower bound are both1:

Ω(|N ||m|3) (5.1)

To establish this, we note that

• There are at least as many rules as there are non-terminals.

• Every binary rule a → b c has parameter t(a → b c, hb, hc | a, ha), a tensor
with |m|3 elements. The parameter is an outer product of 3 |m|-dimensional
vectors, which takes Ω(|m|3) time to construct.

To construct all of the parameters for every rule, it takes Ω(|N ||m|3) time. All of
the parameters need to be saved, thus taking Ω(|N ||m|3) space.

In the following sections, we discuss how to reduce the runtime and storage without
losing parsing accuracy, by increasing |N | and decreasing |m|.

5.1 Markovization
As we have mentioned in Chapter 1, we can increase a PCFG’s parsing accuracy by
simply annotating each node with its parent’s and siblings’ labels. This process is
called Markovization and it makes the grammar more fine-grained. But if too much
Markovization is applied, the grammar can become too fragmented and result in no
parse.

Markovization can be seen as explicitly splitting each-nonterminals into different
states. We would hope that, if we apply Markovization to the trees, we would need

1Assuming no degenerate condition where every tree in the training set only has 1 node.
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less latent states to achieve similar parsing accuracy. This was indeed true, but some
care was required. It is very easy to oversplit because we are essentially splitting
the grammar twice: first with Markovization and then with latent states.

In the literature, different orders of Markovization are denoted using a tuple. For
example (v = 1, h = 1) denotes that 1 vertical (parent) and 1 horizontal (siblings)
Markovization. For a PCFG grammar, one can reach a maximum parsing score with
a (v = 2, h = 2) Markovization. But if we want to split the grammar further in
L-PCFG, a (v = 2, h = 2) Markovization will make the grammar too fragmented.
As noted by Petrov (2012), even a (v = 1, h = 1) Markovization would be too
much. Klein and Manning (2003) achieved a good accuracy with a (v < 2, h < 2)
Markovized grammar, but their approach to construct such an "in-between" gram-
mar is quite convoluted. Here, we propose a simple (v < 1, h = 1) Markovization
that worked well in this work.

We assume that the parse trees are preprocessed and binarized. Then there exist 2
types of nodes:

• Original nodes – nodes that exist before binarization

• New nodes – nodes that are induced from binarization

During binarization, we apply a (v = 0, h = 1) Markovization (horizontal Markoviza-
tion only affects new nodes). Once that is done, we apply a (v = 1, h = 0) Markoviza-
tion to the original nodes only. The resulting grammar would have a (v < 1, h = 1)
Markovization. Table 5.1 compares the F1 score across different Markovizations,
but the conclusion is that the (v < 1, h = 1) is the best.

5.2 Simpler Feature Functions
This section details the features the functions φ, ψ collect. An added benefit of
Markovization is that we do not need to collect as many features in this stage, thus
making the feature functions much simpler than that in Cohen et al. (2013).

VP

V

saw

NP

D

the

N

dog

(a)

S

NP

D

the

N

cat

VP

V

saw

NP

D N

dog

(b)

Figure 5.1: Example trees from Cohen et al. (2013)



Chapter 5. Two-Stage Splitting 20

The inside feature function φ collects 2 features:

1. Left child’s rule + with the right child.

2. Right child’s rule + with the left child.

If we collect the inside features of the inside tree in Figure 5.1(a), these 2 features
would be:

VP

V

saw

NP

VP

V NP

D

the

N

dog

Figure 5.2

The outside feature function ψ collects 3 features:

1. Parent’s rule

2. Grandparent’s rule + with parent’s rule

3. Grand-grandparent’s rule + grand-parent’s rule + parent’s rule

If we collect the outside features of the outside tree in Figure 5.1(b), these 3 features
would be:

NP

D N

VP

V NP

D N

S

NP VP

V NP

D N

Figure 5.3

In Cohen et al. (2014), φ and ψ collected 7 features each. In this work, with only
2 inside and 3 outside features, we can get very similar parsing accuracy. Also note
that extracting the features and putting them into a sparse data structure actually
takes up a significant portion of the training time. By reducing the number of
features extracted, we reduce the feature extraction time by almost 3 folds.

5.3 Latent Split and Complexity
Previously, Cohen et al. (2014) achieved a 88.05 F1 on the test set with m = 32 (i.e.
32 splits). In this work where we split twice (once with Markovization and once with
latent annotations), we achieved 87.80 F1 on the test set with |mI | = 13, |mP | = 16
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(i.e. 13 splits for in-terminal and 16 splits for pre-terminals). Markovization made
|N | 4 times bigger, while the number of latent states |m| needed is 2 times smaller.
As we established, the complexity lower bound is Ω(|N ||m|3). Thus we would expect
about half the training time and storage needed than before, and this indeed was
empirically true.

5.4 Effect of Markovization
In this section, we compare the parsing accuracy with grammars of different Markoviza-
tion orders. Note that we collect the set of features introduced in section 5.2 and set
the number of latent state splits to |mI | = 13, |mP | = 16. These settings are tuned
for this work, and we shall emphasize that other settings will give very different
numbers.

(v = 0, h = 0) (v = 1, h < 1) (v = 1, h = 1)
PCFG 68.16 80.83 70.67
L-PCFG 84.30 88.10 86.30

Table 5.1: F1 scores on dev set when different Markovization orders are applied,
with |mI | = 13, |mP | = 16.

Clearly, in this benchmark, (v = 1, h < 1) Markovization is much better than
the other two options. But the numbers also suggest that our grammar is still
fragmented because of Markovization. Because the F1 score of the PCFG increased
by >12 going from (v = 0, h = 0) to (v = 1, h < 1) Markovization; while the F1
score only increased by <4 for the L-PCFG. This is much lower than we have wished
for and we shall try to find better ways to do Markovization in future work.
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Unknown Word Handling

Unknown work handling is an important and difficult problem we have not ad-
dressed. At test time, if we encounter a word that we have not seen in the training
set, how would we deal with it?

Many researchers have tried different ways to address this. In particular, Cohen
et al. (2013) did the following:

1. During preprocessing, replace words that appear infrequently with their part-
of-speech (POS) tags.

2. Then train the grammar as normal.

3. At inference time, we use a POS tagger to tag the sentence.

4. Replace any unknown words with its POS tag (generated by the tagger).

This solution is very convenient because pre-trained POS taggers are widely available
and it is also simple to train a custom POS tagger. But there are some potential
problems with using POS taggers:

• If we use an externally trained POS tagger, the tagger might have been trained
on a much larger vocabulary than the WSJ vocabulary and we gain an ad-
vantage when testing. This makes an unfair comparison between different
parsers.

• The parser would not be very portable because the tagger must also be dis-
tributed for others to re-produce the result.

In this work, we implement a different solution to handling unknown words. It was
originally written for the Berkeley Parser (Petrov, 2015). At training time, every
infrequent word is mapped to one of more than 30 categories, for example:

• 19th-century is mapped to UNK-LC-NUM-DASH - an unknown word
that is in lower case that contains numeric characters and dashes.

• Rolls-Royce is mapped to UNK-CAPS-DASH - an unknown word that
has capital letters and contains dashes.

22
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• oldest is mapped to UNK-LC-est - an unknown word that is in lower case
and ends in est.

• = is mapped to UNK - an unknown word with no special attributes.

At test time, the unknown words are mapped to these categories in the same way
and we can then proceed to parse as normal.

The parsing accuracy did not increase (nor decrease) using this method for handling
unknown words. But without the need for a POS tagger, this method is more
portable. Also since many parsers have used this exact method for unknown word
handling, it makes for a fairer comparison between this work and other related work.



Chapter 7

Evaluation Metric and Parsing
Algorithm

This chapter assumes the reader is familiar with Python syntax.

So far, we have spent most of the time discussing the training algorithm for L-PCFG.
In this chapter, we will discuss how we evaluate the parse trees our parser produces
and more importantly, how the parse trees are produced by our parser in the first
place.

7.1 Labelled Bracket Score
We now introduce the labelled bracket F1 score, the standard metric used for com-
paring syntactic parsers.

Each parse tree T consists of a set of nodes N . Each node has a label a and covers
a span from the i-th word to the j-th word, represented using a 3-tuple (a, i, j). A
parse tree T can then be characterized as a set of labelled spans:

T = {(a, i, j) | a node in T has label a that covers span (i, j)} (7.1)

Given a sentence, let the parse tree a parser produces be Tc (c stands for candidate)
and the gold parse tree be Tg. Then the labelled bracket recall, precision, and F1
score are as follows:

Recall =
|Tc ∩ Tg|
|Tg|

(7.2)

Precision =
|Tc ∩ Tg|
|Tc|

(7.3)

F1 = 2 · Recall · Precision
Recall + Precision

(7.4)
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F1 scores are reported because both precision and recall can be artificially inflated.
EVALB (Sekine and Collins, 1997) is the default software used to calculate the above
metrics and is also used in this work (with the new.prm parameter file).

7.2 Labelled Recall Algorithm
Assuming that we have the marginal probabilities µ(a, i, j) (probability of non-
terminal a covers the span (i, j)) for all non-terminals a and all possible spans (i, j)
(we will state the algorithm to calculate the marginals in section 7.3).

Goodman (1996) introduced a bottom-up dynamic programming algorithm that
chooses a parse tree that maximizes labelled bracket recall:

arg max
Tc

∑
(a,i,j)∈Tc

µ(a, i, j) (7.5)

The pseudo-code of the algorithm is reproduced using Python syntax in Figure 7.1.

1 for length in range(2, N + 1): # N is the length of the yield
2 for i in range(N - length + 1):
3 j = i + length - 1
4 for a in nonterminals:
5 max_marginal = max(max_marginal, marginal(a, i, j))
6 for k in range(i, j):
7 best_split = max(best_split, maxc[i, k], maxc[k + 1, j])
8 maxc[i, j] = max_marginal + best_split

Figure 7.1: Labelled recall algorithm

maxc[1, N] contains the maximum labelled bracket recall score and it is not hard
to retrieve the parse tree that achieves this score by tracing back.

We found that it is insufficient to use the algorithm as stated, because the result-
ing parse is almost always syntactically incorrect. In this work, we extended the
algorithm so that the every rule in the final parse tree must have been seen in the
training set. Readers should consult the source code for details, but the basic idea
is that for each split, we check whether the resulting rule has been seen.

7.3 Inside-Outside Algorithm for PCFG
In section 7.2, we assumed that we have obtained the marginal probabilities µ(a, i, j).
Now we describe the algorithm to obtain the marginals under a PCFG1 using the
inside-outside algorithm. Michael Collins has a fantastic tutorial on this algorithm
Collins, some of the materials here are adapted from his work.

1Instead of a L-PCFG, which will be in section 7.4.
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First state the definition of the marginal:

µ(a, i, j) =
∑

T∈T :(a,i,j)∈T

p(T )

where T is the set of all possible parse trees for the sentence and p(T ) is the proba-
bility of the tree T . In words, we are computing the sum probability of parse trees
that contain nonterminal a that spans (i, j).

Next, we claim that µ(a, i, j) can be computed from two functions α(a, i, j) and
β(a, i, j):

µ(a, i, j) = α(a, i, j)β(a, i, j) (7.6)

α(a, i, j) returns the sum probability of all the possible inside trees that contain
nonterminal a that spans (i, j); and β(a, i, j) returns the sum probability of all the
possible outside trees that contain nonterminal a that spans (i, j). Figure 7.2 shows
the inside and outside trees for (a, i, j).

Figure 7.2: Inside tree of node a covering span (i, j) and outside tree of node a
covering spans (0, i− 1), (j + 1, N − 1).

It should be intuitive that, if the probability of all possible inside trees and the prob-
ability of all possible outside trees are known, their product would be the probability
of all possible trees. Collins gave a proof in his tutorial, and we shall not repeat
it here. In the next two sections, we state and visualize the dynamic programming
algorithms to compute αs and βs.
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7.3.1 Computing α(a, i, j)

αs are computed using dynamic programming, identically to the Cocke–Younger–Kasami
(CYK) (Kasami, 1965; Younger, 1967) algorithm. See Figure 7.3 for a code snippet
(base case omitted).

1 for length in range(2, N + 1):
2 for i in range(N - length + 1):
3 j = i + length - 1
4 for k in range(i, j):
5 for b in inside[i][k]:
6 for c in inside[k + 1][j]:
7 for a→ b c in possible_rules(b, c):
8 inside[i][j][a] += p(a→ b c) * \
9 inside[i][k][b] * \

10 inside[k + 1][j][c]

Figure 7.3: Inside pass of the inside-outside algorithm

The value in entry inside[i][j][a] corresponds to α(a, i, j). Figure 7.4 is the
mental image you should have for understanding the code.

Figure 7.4: α(a, i, j) is calculated using α(b, i, k) and α(b, k + 1, j).
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7.3.2 Computing β(a, i, j)

Once we have all the αs, we can use them when computing the βs. It is again
dynamic programming, but top-down instead of bottom-up. See Figure 7.5 for a
code snippet (base cases omitted).

1 for length in range(N - 1, 0, -1):
2 for i in range(N - length + 1):
3 j = i + length - 1
4 for k in range(j + 1, N):
5 for a in outside[i][k]:
6 for c in outside[j + 1][k]:
7 for a→ b c in possible_rules(a, c):
8 outside[i][j][b] += p(a→ b c) * \
9 outside[i][k][a] * \

10 inside[j+1][k][c]
11 for k in range(i):
12 for a in outside[k][j]:
13 for b in outside[k][i - 1]:
14 for a→ b c in possible_rules(a, b):
15 outside[i][j][c] += p(a→ b c) * \
16 outside[k][j][a] * \
17 inside[k][i - 1][b]

Figure 7.5: Outside pass of the inside-outside algorithm

The outside tree of any node are comprised of two parts - its parent’s outside tree
and its sibling’s inside tree. The node can itself be a left or a right sibling, and we
need to take both cases into account (one case on lines 4-10 and another on lines
11-17). Figure 7.6 is the mental image you should have for understanding the code
(the current node can either be at the b position or the c position).

(a) (b)

Figure 7.6: (a) Node is the left sibling, β(b, i, j) is calculated using β(a, i, k) and
α(c, j + 1, k). (b) Node is the right sibling, β(c, i, j) is calculated using
β(a, k, j) and α(b, k, i− 1).
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7.4 Inside-Outside Algorithm for L-PCFG
Extending the inside-outside algorithm for PCFG to L-PCFG is simple. In a L-
PCFG, parameters are tensors t (and vectors q,π). For convenience, we define 3
operators that take in a tensor and 2 vectors as arguments and return a vector:

[Ojk(t, q1, q2)]i =
∑
j,k

ti,j,kq
1
jq

2
k

[Oik(t, q1, q2)]j =
∑
i,k

ti,j,kq
1
i q

2
k

[Oij(t, q
1, q2)]k =

∑
i,j

ti,j,kq
1
i q

2
j

For readers who are familiar with einsum, these operators are equivalent to
einsum('ijk,j,k->i', t, q1, q2), einsum('ijk,i,k->j', t, q1, q2),
einsum('ijk,i,j->k', t, q1, q2).

Substitute lines 8-10 in Figure 7.3 with:

inside[i][j][a] += Ojk(t(a→ b c),
inside[i][k][b],
inside[k + 1][j][c])

and substitute lines 8-10 in Figure 7.5 with:

outside[i][j][b] += Oik(t(a→ b c),
outside[i][k][a],
inside[j+1][k][c])

and finally substitute lines 15-17 in Figure 7.5 with:

outside[i][j][c] += Oij(t(a→ b c),
outside[k][j][a],
inside[k][i - 1][b])

Convince yourself that this new inside-outside algorithm in tensor form computes
the right parameters. In practise, we first run the inside-outside algorithm for PCFG
and prune the entries that have low probabilities and then run the algorithm for L-
PCFG. Running the algorithm for L-PCFG directly would take significantly longer
and would only achieve marginally better (or the same) parsing accuracy.

Once we have our αs and βs, we compute the marginals using the dot product2:

µ(a, i, j) = |α(a, i, j) · β(a, i, j)| (7.7)

With the marginals, we can build the best parse using the labelled recall algorithm.
In the next chapter, we discuss some implementation problems and solutions.

2We need to also take the absolute value of the dot product, as explained in Cohen et al. (2013).



Chapter 8

Code Acceleration with Numba

In Chapter 7 we introduced two important dynamic programming algorithms. Given
a sentence of length N , the labelled recall algorithm runs in O(N3) time and the
inside-outside algorithm runs in O(|N |N3) time. These high complexities make
high-performance code essential.

The problem was that we wished to implement everything in Python and native
Python (CPython) for dynamic programming and numerical loops is known to be
very slow because of its interpreted nature. Even with multi-processing, parsing the
whole development set would take days.

We considered accelerating the code with custom C-extensions, Cython, PyPy, but
finally settled on using Numba (Lam et al., 2015). Taken from Numba’s website1,
"Numba is an open source JIT compiler that translates a subset of Python and
NumPy code into fast machine code". To put it simply, we can annotate our existing
code and it would be compiled and executed (instead of interpreted) at runtime.
There were some complications because only a subset of Python is supported and
compromises were made to fit everything (data structures, matrix operations, multi-
processing) into that subset. The details are hard to demonstrate in a written
format, readers should consult the code if interested.

As part of this dissertation, I gave a talk on Numba to Dr Shay Cohen’s group
at Edinburgh. The slides can be found here: https://github.com/GavinPHR/
Numba-Talk.

1Numba’s official website: https://numba.pydata.org/

30

https://github.com/GavinPHR/Numba-Talk
https://github.com/GavinPHR/Numba-Talk
https://numba.pydata.org/


Chapter 9

Efficient Hyperparameter Tuning

Many hyperparameters need to be tuned in the training algorithm, notably:

• mI – the number of latent states for in-terminals

• mP – the number of latent states for pre-terminals

• C for calculating λ in parameter smoothing

We tune them by repeated running the training algorithm and evaluating on the
development set, and finally picking the set of hyperparameters that achieve the
highest F1 score.

With this high-performance implementation, it takes only 30 minutes1 to run the
training and evaluation code end-to-end. It is indeed possible for humans to manu-
ally tune the hyperparameters and achieve an acceptable parsing accuracy. But 30
minutes for 1 iteration is still prohibitively long for an automated routine, such as
Bayesian optimization in section 9.2.

9.1 Caching
In an attempt to overcome the prohibitively long training-evaluation iteration, we
noticed that in every such iteration, much of the same work is done. If we can cache
everything that is unchanged from iteration to iteration, we can save a lot of time.

For the training pipeline, we can actually delay the application of all the hyperpa-
rameters to the final stage where we construct the parameters. Let mmax be the
maximum number of states we would allow. During the truncated SVD stage, we
truncate the SVD to rank mmax, the projections are then also of size mmax. Finally,
the constructed parameters t have size mmax ×mmax ×mmax, q,π have size mmax.
Only now, we truncate the parameters further into the right dimensions (i.e. with
mI ,mP). Figure 9.1 illustrates how this truncation is done.

If we are applying the hyperparameters at the final stage, we can indeed just cache
everything the final stage. Then in every training-evaluation iteration, we can run

1Training on 1 4-core CPU and evaluation on 4 8-core CPUs.
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Figure 9.1: All the maximum parameters (solid lines) are cached and they are trun-
cated (dotted lines) depending on the hyperparameters.

the final stage only with different hyperparameters and save 95% of the training
time to about 30 seconds.

For the evaluation pipeline, we noticed that 90% of the time was spent pruning using
the PCFG. Since the PCFG remains unchanged (because the hyperparameters only
affect the L-PCFG), we can cache all the prune charts and reduce the parsing time
by 90% to about 2 minutes.

With caching, 1 iteration of training-evaluation takes less than 3 minutes. It is
now possible to use automated routines to tune the hyperparameters and we shall
introduce one such routine in the next section.

9.2 Bayesian Optimization
Bayesian optimization is a method to optimize any black-box function. The details
of Bayesian optimization is not the focus of this work, but it optimizes a function
by exploring and exploiting the function’s different regions. It is especially advan-
tageous for optimizing functions that are not easily differentiable (like the one we
have).

A common requirement for Bayesian optimization is that the parameters are contin-
uous. Some parameters (i.e. the number of latent states) we are tuning are clearly
not continuous. There are ways to make Bayesian optimization work with discrete
parameters, but that is well beyond the scope of this work. We can ‘hack’ this
limitation by inputting continuous parameters and cast them into integers ‘inside
the black-box’.

We used the bayes_opt module (Nogueira, 2014) to do Bayesian optimization and
was successful at raising the parsing accuracy.



Chapter 10

Results and Evaluation

We have thus far described the training and evaluation pipelines and methods to
improve their performance. In this chapter, we show some quantitative results.

10.1 Training Speed and Parameter Size
In Chapter 4, we described vectorization that makes efficient matrix-vector compu-
tations. In Chapter 5, we proposed a two-stage splitting procedure that is faster
and takes less space, in terms of computational complexities.

Benchmarked on a laptop with an Intel i7-7700HQ (4-core CPU) and 16GB
of RAM.

In this implementation, the whole training pipeline takes 5 minutes and the final
parameters take 270MB disk space. The previous implementation, Rainbow Parser
(Cohen and Narayan, 2017), takes 5 hours 20 minutes to train and the final pa-
rameters take 12.5GB disk space (in addition, 12GB disk space is used to store
intermediate parameters). We achieved a 64x improvement in speed and a 46x
improvement in space.

These results are much better than we anticipated. They prove that the spectral
learning algorithm can be highly efficient and has huge potential. For completeness,
Figure 10.1 shows a breakdown of training time.

Figure 10.1: Breakdown of training time
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10.2 Parsing Speed and Accuracy
Using 4 Intel Xeon E5-2630 (8-core CPU), parsing the development set (1700 sen-
tences) takes 20 minutes and the test set (2416 sentences) takes 32 minutes.

Table 10.1 shows the full results on the development and test sets.

Dev Set Test Set
Precision 88.20 88.06
Recall 88.01 87.56
F1 88.10 87.81
EX 32.92 32.70
POS 97.09 97.25

Table 10.1: Results from development and test sets, as generated by EVALB.
EX = exact match POS = POS tagging accuracy

Table 10.2 compares this work to other related work and state-of-the-arts.

Dev Set F1 Test Set F1
(Matsuzaki et al., 2005) – 86.10
(Petrov and Klein, 2007) 91.20 90.10

(Cohen et al., 2013) 88.82 88.05
(Zhao et al., 2018) 91.24 91.02

This work 88.10 87.81
(Socher et al., 2013) 91.20 90.40
(Dyer et al., 2016) – 92.40

(Vaswani et al., 2017) – 91.30
(Kitaev and Klein, 2018) 95.21 95.13

(Mrini et al., 2020) – 96.38

Table 10.2: Comparison between this work and other related work including some
state-of-the-arts

It can be seen that this work achieves an F1 score similar to that in Cohen et al.
(2013). Parsers in the upper section of Table 10.2 are all latent-variable models
and Zhao et al. (2018) achieved a test F1 of 91.02. Much work still needs to be
done for a spectral parser to match that F1 score. Parsers in the bottom section
of Table 10.2 are all neural models. Socher et al. (2013) and Dyer et al. (2016)
are based on recurrent neural networks and achieved slightly higher F1 than latent-
variable models. Since the famous Attention Is All You Need paper (Vaswani et al.,
2017), many state-of-the-art parsers use the attention mechanism, Berkeley Neural
Parser (Kitaev and Klein, 2018) is one of the most cited such parsers. These parsers’
accuracies greatly exceed this work and achieves human-level performance. In future
work, we should keep exploring the possibilities of incorporating deep learning and
attention into a spectral parser.



Chapter 11

Conclusion and Future Work

In this work, we re-implemented the spectral learning algorithm for L-PCFG. We
used vectorization (Chapter 4) and two-stage splitting (Chapter 5) to drastically
reduce the training time; we used Numba to JIT-compile and accelerate the high-
complexity parsing algorithms; and we described a way to tune hyperparameters
efficiently with caching. All of these are implemented efficiently in a single program-
ming language. Additionally, the codebase is user-friendly, compact, and maintain-
able.

In this written work we have spelled out all the unspoken practises in the field of
syntactic parsing – the common dataset used, how the dataset is processed, the
evaluation metric and evaluation software etc. We have also introduced the spectral
learning algorithm from an engineering perspective, and we believe that newcomers
to this field would find this work easier to grasp than the other very mathematical
papers.

This work can be continued in many ways, including but not limited to:

• adapting it to work with languages other than English

• making use of word embeddings to disambiguate, especially for PP, SBAR,
and CC constituents.

• finding better ways to do Markovization and feature extraction to improve
accuracy

There can be even more out-of-the-box extensions like making training-evaluation
differentiable end-to-end and training with gradient-descent, but we shall leave this
to the readers’ imagination.

Overall, this work proves that spectral parser is highly efficient, helps newcomers
understand how it works and how it is implemented, and serves as a stepping-stone
towards a spectral parser that is also highly accurate.
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